171 research outputs found

    Subgigahertz-resolution table-top spectrograph calibrated with a 4-GHz optical frequency comb

    Get PDF
    We developed a table-top multipass spectrograph with a 610-MHz resolution (corresponding to a resolving power of 450,000) and a throughput of 10%. The spectrograph was calibrated with a 4-GHz optical frequency comb (OFC) that did not require filtering cavities, which would hinder long-term operation. The OFC is centered at a wavelength of 1 ÎŒm, which makes it suitable for the investigation of M dwarf stars and the compact size of the OFC-calibrated spectrograph makes it suitable for use in small to mid-scale observatories

    Temperature dependence of interlayer coupling in perpendicular magnetic tunnel junctions with GdOx barriers

    Full text link
    Perpendicular magnetic tunnel junctions with GdOX tunneling barriers have shown a unique voltage controllable interlayer magnetic coupling effect. Here we investigate the quality of the GdOX barrier and the coupling mechanism in these junctions by examining the temperature dependence of the tunneling magnetoresistance and the interlayer coupling from room temperature down to 11 K. The barrier is shown to be of good quality with the spin independent conductance only contributing a small portion, 14%, to the total room temperature conductance, similar to AlOX and MgO barriers. The interlayer coupling, however, shows an anomalously strong temperature dependence including sign changes below 80 K. This non-trivial temperature dependence is not described by previous models of interlayer coupling and may be due to the large induced magnetic moment of the Gd ions in the barrier.Comment: 14 pages, 4 figure

    Crossover from Kondo assisted suppression to co-tunneling enhancement of tunneling magnetoresistance via ferromagnetic nanodots in MgO tunnel barriers

    Full text link
    Recently, it has been shown that magnetic tunnel junctions with thin MgO tunnel barriers exhibit extraordinarily high tunneling magnetoresistance (TMR) values at room temperature1, 2. However, the physics of spin dependent tunneling through MgO barriers is only beginning to be unravelled. Using planar magnetic tunnel junctions in which ultra-thin layers of magnetic metals are deposited in the middle of a MgO tunnel barrier here we demonstrate that the TMR is strongly modified when these layers are discontinuous and composed of small pancake shaped nanodots. At low temperatures, in the Coulomb blockade regime, for layers less than ~1 nm thick, the conductance of the junction is increased at low bias consistent with Kondo assisted tunneling. In the same regime we observe a suppression of the TMR. For slightly thicker layers, and correspondingly larger nanodots, the TMR is enhanced at low bias, consistent with co-tunneling.Comment: Nano Letters (in press

    Computational modelling of meiotic entry and commitment

    Get PDF
    In response to developmental and environmental conditions, cells exit the mitotic cell cycle and enter the meiosis program to generate haploid gametes from diploid germ cells. Once cells decide to enter the meiosis program they become irreversibly committed to the completion of meiosis irrespective of the presence of cue signals. How meiotic entry and commitment occur due to the dynamics of the regulatory network is not well understood. Therefore, we constructed a mathematical model of the regulatory network that controls the transition from mitosis to meiosis in Schizosaccharomyces pombe. Upon nitrogen starvation, yeast cells exit mitosis and undergo conjugation and meiotic entry. The model includes the regulation of Mei2, an RNA binding protein required for conjugation and meiotic entry, by multiple feedback loops involving Pat1, a kinase that keeps cells in mitosis, and Ste11, a transcription activator required for the sexual differentiation. The model accounts for various experimental observations and demonstrates that the activation of Mei2 is bistable, which ensures the irreversible commitment to meiosis. Further, we show by integrating the meiosis-specific regulation with a cell cycle model, the dynamics of cell cycle exit, G1 arrest and entry into meiosis under nitrogen starvation. © 2017 The Author(s)

    Measurement and comparison of individual external doses of high-school students living in Japan, France, Poland and Belarus -- the "D-shuttle" project --

    Full text link
    Twelve high schools in Japan (of which six are in Fukushima Prefecture), four in France, eight in Poland and two in Belarus cooperated in the measurement and comparison of individual external doses in 2014. In total 216 high-school students and teachers participated in the study. Each participant wore an electronic personal dosimeter "D-shuttle" for two weeks, and kept a journal of his/her whereabouts and activities. The distributions of annual external doses estimated for each region overlap with each other, demonstrating that the personal external individual doses in locations where residence is currently allowed in Fukushima Prefecture and in Belarus are well within the range of estimated annual doses due to the background radiation level of other regions/countries

    The Fission Yeast Stress-Responsive MAPK Pathway Promotes Meiosis via the Phosphorylation of Pol II CTD in Response to Environmental and Feedback Cues

    Get PDF
    The RRM-type RNA-binding protein Mei2 is a master regulator of meiosis in fission yeast, in which it stabilizes meiosis-specific mRNAs by blocking their destruction. Artificial activation of Mei2 can provoke the entire meiotic process, and it is suspected that Mei2 may do more than the stabilization of meiosis-specific mRNAs. In our current study using a new screening system, we show that Mei2 genetically interacts with subunits of CTDK-I, which phosphorylates serine-2 residues on the C-terminal domain of RNA polymerase II (Pol II CTD). Phosphorylation of CTD Ser-2 is essential to enable the robust transcription of ste11, which encodes an HMG-type transcription factor that regulates the expression of mei2 and other genes necessary for sexual development. CTD Ser-2 phosphorylation increases under nitrogen starvation, and the stress-responsive MAP kinase pathway, mediated by Wis1 MAPKK and Sty1 MAPK, is critical for this stress response. Sty1 phosphorylates Lsk1, the catalytic subunit of CTDK-I. Furthermore, a feedback loop stemming from activated Mei2 to Win1 and Wis4 MAPKKKs operates in this pathway and eventually enhances CTD Ser-2 phosphorylation and ste11 transcription. Hence, in addition to starting meiosis, Mei2 functions to reinforce the commitment to it, once cells have entered this process. This study also demonstrates clearly that the stress-responsive MAP kinase pathway can modulates gene expression through phosphorylation of Pol II CTD
    • 

    corecore